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TRANSONIC FLOW PAST DUCTED BODIES OF REVOLUTION

Yu. B. Lifshits, O. S. Ryzhov

(Moscow)

ABSTRACT. Application of exact particular solutions
in the form of polynomials in r (where r is a cylindrical
coordinate) of the equations describing supersonic gas flows
to the construction of a ducted body of revolution situated
in a low-supersonic gas flow. The results indicate that in
the solutions, shock waves attenuate asymptotically at
r + 00, as a result of which the solutions contain a rare­
faction-wave envelope.(A67-27989) ~

For the purpose of investigating axial symmetric gas flows in a transonic 1114*

velocity region, Karman introduced the dimensionless functions v "
x

the independent variables x', r', which are related to the particle

V t and
r

velocity

components v , v , density p, specific volume V = IIp, pressure p, velocity ofx r
sound a, specific entropy s, and the cylindrical coordinates x, r by means of

the following relations [1]

.~ .. ..
..:...:1.i:...: . ,_ .,L • r~ '.• (1)

Here £ is a small parameter, L is a characteristic dimension, and the

asterisk denotes the critical state of the gas. The new unknown functions v '
x

and v ' are found by solving a system of differential equations
r

~r fir"l¥';p.+-+ - - 0.,
(2)

*Number in the margin indicates the pagination in the original foreign text.
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where for brevity we omitted primes over all variables.

Reference [2] analyzes the particular solutions of the system of

Equations (2) which are in the form of polynomials in r

.,- ..... ~1 ,-~~'~~.., • ,

tl}..-,~~..., ... ~ ',< ,~~-."1"".!ir., .~ (3)

The functions of the parameter, appearing in (3), satisfy a system of

ordinary differential equations

(4)

The first two equations in (4) can be separated from the rest. Their

properties were investigated in [3], where they were used to construct the

velocity fields in Laval nozzles of circular cross-section. Solutions of the

form of (3) were first obtained in [4] for the equations of short waves, which

describe flows with small but sharp variations of the gas parameters in narrow

regions adjoining shock wave fronts.

The particular solutions (3) result in a flow with a parabolic shock wave

at the front of which two boundary conditions must be satisfied. The first

of them is the equation of Busemann's shock polar [5]; the second consists of

the continuity condition on the velocity component which is tangential to the

shock front. These boundary conditions result in the Cauchy problem [2]

(5)
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for the functions involved in the system of ordinary differential equations

(4). The constant v > 0 is determined by the velocity of the oncoming uni-
X '"

form supersonic flow, the value of hO(~2) specifies the position of the shock.

Let us now construct by means of the solution (3) a due ted body of revo­

lution immersed in a gas moving at a low supersonic velocity. As the charac­

teristic dimension L in Equations (1), we shall take the radius of the duct,

and as the small parameter E we shall take the angle at the vertex,

which will be considered so small that the shock wave is attached. The origin

of the coordinates will be placed on the axis of symmetry of the flow, so that

the position x = 0 will correspond to the leading edge of the body over which

the flow occurs. Hence, we find

(6)

The solution of the Cauchy problem (5), (6) for the system (4) gives

the desired velocity field. The shape of the contour r = R(x) of the body

over which the flow occurs in terms of the initial variables is given by the

equations

~•~...
,

• j (7) /115

We must express the parameter ~2 in terms of v and For this
x'"

purpose, it is simplest to use the condition that the velocity behind the

shock wave at the leading edge of the body be directed along its contour.

Using Equation (1) and the initial conditions (5), we obtain for ~2 a cubic

equation
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As the solution of the latter, we take

which corresponds to the weaker of the two possible shock waves which are

formed in a flow over an infinite wedge with given half-angle at the vertex.

One of the fields of flow is shown in Figure I, where we plotted the

lines of constant velocity v (x, r) = const, the shock wave and the character­
x

is tics inclined in the direction of the gas flow C+' Figure 2 shows the body

of revolution which perturbs the flow. Its contour is defined by Formulas (7).

The Mach number M00 of the oncoming flow in the calculations was taken as 1.2

(v 1.229), the edge angle of the leading edge of the body was = 0.072,
x 00

*and the coefficient m = 1.2 (which corresponds to the ideal gas whose Poisson

adiabatic exponent was x = 1.4). With these values of the parameters, the

velocity at the body directly behind the shock wave waS subsonic, and then it

gradually rose to supersonic.
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Figure 1

The most interesting feature of

the flows under consideration is the

occurrence of the limiting line in

the supersonic region of the velocity

field (Figure 1). Its appearance is

Figure 2



due to the fact that, along the straight lines r = const, the coordinate x(~)

attains a maximum. In a parametric form the limiting line is determined by

the formulas

(8)

At those points of the curve (8), the derivatives of the velocity vector

components with respect to the coordinates become infinite, and the radius of

curvature of the streamlines is zero. The limiting line is the simultaneous

envelope of the curves

with it and come to an

v (x, r)
x

end at the

const and the rarefaction waves which merge

shock wave. This line begins on the body at

the point where its contour has a cuspidal point, and is propagated below the

flow, reaching the shock front tangent to the latter. At the point of contact

between the shock wave and the rarefaction wave envelope, it degenerates into

the characteristic with zero excess pressure.

Simultaneously from the point of the intersection of the body contour

with the limiting line, there is a C+ characteristic slanted downwards along

the flow, up to which the velocity field is specified by analytic functions.

A further analytic continuation of the flow beyond the characteristic in

question is impossible; it does not correspond to any real body of revolution.

In addition, such a continuation would mean that in the supersonic flow with

M~ > I, the shock wave of parabolic form ~ = ~2 = const, should degenerate

into a characteristic at a finite distance from its point of appearance. But,

as we know [6], the attenuation of the shock waves occurs asymptotically for

r +~. This fact means that the solution (3) contains the envelope of the

rarefaction waves; the fields of the DIane parallel flows, investigated in

detail in [2], must have a similar structure.
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